今天给各位分享大数据在数据处理过程中应保证的知识,其中也会对大数据对数据进行什么处理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、大数据时代数据保护的基本原则是什么?
- 2、大数据应用须解决三大关键点
- 3、大数据处理的最初任务
大数据时代数据保护的基本原则是什么?
大数据保护的基本原则包括:透明原则、目的限制原则、最小化原则、数据质量原则、安全原则、存活期限限制原则、个人权利和自由的保障原则、机会均等和非歧视原则、合法性原则、对话和合作原则。透明原则:数据处理者应该公开他们的信息收集和处理行为。
如果在数据使用过程中严格遵循符号化和用户特征原则,我们就能规避掉不良风险。”除了技术以外,政策和立法才是大数据时代个人隐私保障的重要凭借。2012年12月28日,《全国人民代表大会常务委员会关于加强网络信息保护的决定》审议通过。
平等交换原则也符合《消费者权益保护法》的基本原则,就是消费者要有知情权、选择权。三是安全处理原则。有的人认为安全就是互联网安全公司干的事,就是杀毒软件的事,我觉得这个观点是错的。
大数据应用须解决三大关键点
然而,要发展“大数据”,就必须对数据的安全有所保障,营造一个安全的数据流通环境。一方面要在数据的获取、存储、使用等方面进行有效保障,如加大“大数据”安全保障体系建设、建立网络安全信息共享机制等;另一方面也要完善相关法律,利用法律的牙齿来进行刑事责任约束,对非法利用数据等违法行为加大惩处力度。
大数据的三大支撑要素包括数据存储、数据处理和数据应用。数据存储:为了保存各类数据,包括结构化数据,大数据需要充足的存储空间。数据处理:大数据的处理需要强大的计算能力,以应对海量数据的挑战。数据应用:大数据的应用需要通过应用程序来挖掘数据中的有价值信息。
首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。
大数据的三大技术支撑要素:分布式处理技术、云技术、存储技术。分布式处理技术 分布式处理系统可以将不同地点的或具有不同功能的或拥有不同数据的多台计算机用通信网络连接起来,在控制系统的统一管理控制下,协调地完成信息处理任务。比如Hadoop。
分布式处理技术 分布式处理技术使得多台计算机通过网络连接,共同完成信息处理任务。这种技术能够将数据和计算任务分散到不同的地点和设备上,提高处理效率。例如,Hadoop就是一个流行的分布式处理框架。云技术 云技术为大数据分析提供了强大的计算能力。
大数据处理的最初任务
大数据处理的最初任务是数据收集与数据清洗。在大数据处理的过程中,一切分析与挖掘工作都建立在数据的基础上。因此,最初的任务就是确保能够全面、准确地收集到所需的数据。这一环节涉及从各种来源获取数据,如日志文件、传感器、社交媒体、交易系统等。
它最初由Facebook开发,用于储存简单格式数据,集Google BigTable的数据模型与AmazonDynamo的完全分布式的架构于一身 Apache Avro: 是一个数据序列化系统,设计用于支持数据密集型,大批量数据交换的应用。
需要处理大量数据的任务通常最适合用批处理操作进行处理。无论直接从持久存储设备处理数据集,或首先将数据集载入内存,批处理系统在设计过程中就充分考虑了数据的量,可提供充足的处理资源。由于批处理在应对大量持久数据方面的表现极为出色,因此经常被用于对历史数据进行分析。
第二次世界大战期间,美国军方要求宾州大学莫奇来(Mauchly)博士和他的 学生爱克特(Eckert) 设计以真空管取代继电器的电子化电脑–ENIAC (Electronic Numerical Integrator and Calculator), 电子数字积分器与计 算器), 目的是用来计算炮弹弹道。
使计算体系按照该计算方式运行,并最终得到相应结果的过程。为了使计算机能够理解人的意图,人类就必须将需解决的问题的思路、方法和手段通过计算机能够理解的形式告诉计算机,使得计算机能够根据人的指令一步一步去工作,完成某种特定的任务。这种人和计算体系之间交流的过程就是编程。
关于大数据在数据处理过程中应保证和大数据对数据进行什么处理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。